

NATIONAL LEVEL SCIENCE TALENT SEARCH EXAMINATION (UPDATED)

CLASS - 12 (PCM)

Question Paper Code : UN499

KEY

1. A	2. B	3. D	4. C	5. B	6. A	7. C	8. B	9. C	10. A
11. B	12. A	13. C	14. C	15. C	16. B	17. D	18. A	19. B	20. D
21. C	22. A	23. C	24. B	25. C	26. D	27. B	28. C	29. B	30. B
31. B	32. B	33. C	34. A	35. C	36. B	37. B	38. C	39. B	40. D
41. C	42. C	43. A	44. B	45. D	46. C	47. D	48. D	49. B	50. B
51. C	52. C	53. C	54. A	55. A	56. D	57. B	58. C	59. D	60. C

EXPLANATIONS

MATHEMATICS

01. (A) On to but not one-one

02. (B)
$$|A| = \frac{1}{(a+ib)(a-ib)-(c+id)(-c+id)}$$

$$= \frac{1}{a^2 + b^2 + c^2 + d^2} = 1$$

$$\therefore A^{-1} = \begin{bmatrix} a - ib & -c - id \\ c - id & a + ib \end{bmatrix}$$

03. (D)
$$R_3 \rightarrow R_3 - R_2; R_2 \rightarrow R_2 - R_1$$

$$\begin{vmatrix} x + 2 & x + 3 & x + 5 \\ 2 & 3 & 4 \\ 4 & 5 & 6 \end{vmatrix} = -2$$

05. (B)
$$(x_1, y_1, z_1) = (2, 1, 1);$$

 $(x_2, y_2, z_2) = (6, -1, 2);$
 $(x_3, y_3, z_3) = (14, -5, p)$
 $\frac{x_1 - x_2}{x_2 - x_3} = \frac{z_1 - z_2}{z_2 - z_3} \Longrightarrow p = 4$

06. (A)
$$f(x) = \frac{x}{\sqrt{a^2 + x^2}} - \frac{(d - x)}{\sqrt{b^2 + (d - x)^2}}$$
$$= \frac{x}{\sqrt{a^2 + x^2}} + \frac{(x - d)}{\sqrt{b^2 + (x - d)^2}}$$
$$f'(x) = \frac{\sqrt{a^2 + x^2} - \frac{x(2x)}{2\sqrt{a^2 + x^2}}}{(a^2 + x^2)}$$
$$+ \frac{\sqrt{b^2 + (x - d)^2} - \frac{(x - d)2(x - d)}{2\sqrt{b^2 + (x - d)^2}}}{(b^2 + (x - d)^2)}$$
$$= \frac{a^2 + x^2 - x^2}{(a^2 + x^2)^2} + \frac{b^2 + (x - d)^2 - (x - d)^2}{(b^2 + (x - d)^2)^2}$$
$$= \frac{a^2}{(a^2 + x^2)^2} + \frac{b^2}{(b^2 + (x - d)^2)^2} + \frac{b^2}{(b^2 + (x - d)^2)^2}$$
$$\Rightarrow f'(x) > 0, x \in \mathbb{R}$$
$$\Rightarrow f(x) \text{ is increasing function}$$
Hence, $f(x) \text{ is increasing function}$
07. (C) Let $\tan^{-1}(2) = \alpha$ and $\cot^{-1}(3) = \beta$
 $\tan \alpha = 2; \cot \beta = 3$
$$\Rightarrow \sec \alpha = \sqrt{5}; \operatorname{coses} \beta = \sqrt{10}$$
$$\therefore \sec^2 \alpha + \operatorname{coses^2} \beta = 5 + 10 = 15$$

08. (B) $-x_1: x_2 = 3: 2$
09. (C) $= \lim_{x \to 0} \frac{\sqrt{1 + kx} - \sqrt{1 - kx}}{x}$
$$= \lim_{x \to 0} (2x^2 + 3x - 2)$$
$$= \lim_{x \to 0} \frac{2k}{\sqrt{1 + kx} + \sqrt{1 - kx}} = -2$$
$$k = -2$$

10. (A) $x^4 + y^4 = (x^2 + y^2)^2 - 2x^2y^2$ $t^{2} + \frac{1}{t^{2}} = \left(t + \frac{1}{t}\right)^{2} - 2x^{2}y^{2} \Rightarrow x^{2}y^{2} = 1$ differentiating w.r.t. 'x' $\therefore x^2(2y)\frac{\mathrm{d}y}{\mathrm{d}x} + 2xy^2 = 0$ $\therefore \frac{dy}{dx} = \frac{-y}{x}$ $\therefore x^3 y \frac{dy}{dx} = x^3 y \times \frac{-y}{x} = -x^2 y^2$ = - 1 11. (B) $f'(x) = \begin{vmatrix} -2\sin x & 1 & 0 \\ 1 & 2\cos x & 1 \\ 0 & 1 & 2\cos x \end{vmatrix}$ $2\cos x = 0$ 0 + $\left| x - \frac{\pi}{2} \right| - 2\sin x = 1$ 0 0 2cos*x* 2cos*x* 1 0 + $\left| \begin{array}{ccc} x - \frac{\pi}{2} & 2\cos x & 0 \\ 0 & 1 & -2\sin x \end{array} \right|$ $f'(\pi) = \begin{vmatrix} -2\sin\pi & 1 & 0 \\ 1 & 2\cos\pi & 1 \\ 0 & 1 & 2\cos\pi \end{vmatrix}$ 2cosπ 0 0 $+ \begin{bmatrix} \pi - \frac{\pi}{2} & -2\sin \pi & 1 \\ 0 & 0 & 2\cos \pi \end{bmatrix}$

$$\begin{aligned} + \begin{vmatrix} 2\cos \pi & 1 & 0 \\ \pi - \frac{\pi}{2} & 2\cos \pi & 0 \\ 0 & 1 & -2\sin \pi \end{vmatrix} \\ + \begin{vmatrix} \pi - \frac{\pi}{2} & 2\cos \pi & 0 \\ 0 & 1 & -2\sin \pi \end{vmatrix} \\ + \begin{vmatrix} \pi - \frac{\pi}{2} & 2\cos \pi & 0 \\ 0 & 1 & -2\sin \pi \end{vmatrix} \\ + \begin{vmatrix} \pi - \frac{\pi}{2} & 2\cos \pi & 0 \\ 0 & 1 & -2\sin \pi \end{vmatrix} \\ + \begin{vmatrix} \pi - \frac{\pi}{2} & 2\cos \pi & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{vmatrix} \\ + \begin{vmatrix} \pi - \pi & 2 \\ \pi - 2\sin \pi \end{vmatrix} \\ + \begin{vmatrix} \pi - \pi & 2 \\ \pi - 2\sin \pi \end{vmatrix} \\ + \begin{vmatrix} \pi - \pi & 2 \\ \pi - 2\sin \pi \end{vmatrix} \\ + \begin{vmatrix} \pi - \pi & 2 \\ \pi - 2\sin \pi \end{vmatrix} \\ + \begin{vmatrix} \pi - \pi & 2 \\ \pi - 2\sin \pi \end{vmatrix} \\ + \begin{vmatrix} \pi - \pi & 2 \\ \pi - 2\sin \pi \end{vmatrix} \\ + \begin{vmatrix} \pi - \pi & 2 \\ \pi - 2\sin \pi \end{vmatrix} \\ + \begin{vmatrix} \pi & 2 \\ \pi - 2\sin \pi \end{vmatrix} \\ + \begin{vmatrix} \pi & 2 \\ \pi - 2\sin \pi \end{vmatrix} \\ + \begin{vmatrix} \pi & 2 \\ \pi - 2\sin \pi \end{vmatrix} \\ + \begin{vmatrix} \pi & 2 \\ \pi - 2\sin \pi \end{vmatrix} \\ + \begin{vmatrix} \pi & 2 \\ \pi - 2\sin \pi \end{vmatrix} \\ + \begin{vmatrix} \pi & 2 \\ \pi - 2\sin \pi \end{vmatrix} \\ + \begin{vmatrix} \pi & 2 \\ \pi - 2\sin \pi \end{vmatrix} \\ + \begin{vmatrix} \pi & 2 \\ \pi - 2\sin \pi \end{vmatrix} \\ + \begin{vmatrix} \pi & 2 \\ \pi - 2\sin \pi \end{vmatrix} \\ + \begin{vmatrix} \pi & 2 \\ \pi - 2i \end{vmatrix} \\ + \begin{vmatrix} \pi & 2i \end{vmatrix} \\ + \begin{vmatrix}$$

16. (B)
$$I = \int \frac{x^{2} - 1}{(x+1)^{2} \sqrt{x(x^{2} + x + 1)}} dx$$
$$= \frac{1}{dx} \left(\tan^{-1} \sqrt{\frac{x^{2} + x + 1}{x}} \right)$$
$$= \frac{1}{1 + \frac{x^{2} + x + 1}{x}} \times \frac{d}{dx} \left(\sqrt{\frac{1 + x + x^{2}}{x}} \right)$$
$$= \frac{x}{x^{2} + 2x + 1} \left[\frac{\sqrt{x} \times \frac{2x + 1}{2\sqrt{x^{2} + x + 1}} - \sqrt{x^{2} + x + 1} \times \frac{1}{2\sqrt{x}}}{(\sqrt{x})^{2}} \right]$$
$$= \frac{x}{(x+1)^{2}} \left[\frac{\sqrt{x}(2x+1)}{2\sqrt{x^{2} + x + 1}} - \frac{\sqrt{x^{2} + x + 1}}{2\sqrt{x}} \right]$$
$$= \frac{1}{(x+1)^{2}} \left[\frac{x(2x+1) - (x^{2} + x + 1)}{2\sqrt{x(x^{2} + x + 1)}} \right]$$
$$= \frac{1}{(x^{2} + 1)^{2}} \left[\frac{2x^{2} + x - x^{2} - x - 1}{2\sqrt{x(x^{2} + x + 1)}} \right]$$
$$= \frac{1(x^{2} - 1)}{2(x+1)^{2} \sqrt{x(x^{2} + x + 1)}}$$
$$\therefore \frac{x^{2} - 1}{(x+1)^{2} \sqrt{x(x^{2} + x + 1)}}$$
$$\therefore I = \int \frac{d}{dx} \left(2\tan^{-1} \sqrt{\frac{x^{2} + x + 1}{x}} \right)$$
$$\therefore A = 2$$

17. (D)
$$\int e^{x} \left(\frac{2 + \sin 2x}{1 + \cos 2x}\right) dx$$
$$\int e^{x} (\tan x + \sec^{2} x) dx = e^{x} \tan x + c$$

18. (A)
$$\lim_{n \to \infty} \left[\frac{1^{4}}{1^{5} + n^{5}} + \frac{2^{4}}{2^{5} + n^{5}} + \dots + \frac{n^{4}}{n^{5} + n^{5}} \right]$$
$$= \sum_{r=0}^{r=n} \left[\frac{r^{4}}{r^{5} + n^{5}} \right] = \frac{1}{0} \frac{x^{4}}{1 + x^{5}} dx$$
$$put 1 + x^{5} = t \implies 5x^{4} = \frac{dx}{dt} \implies x^{4} = \frac{1}{5} \frac{dx}{dt}$$
$$= \frac{2}{1} \frac{2}{5t} \frac{dt}{5t} = \frac{1}{5} [\log t]_{1}^{2} = \frac{1}{5} \log 2$$

19. (B)
$$\frac{3}{2} \frac{dx}{x^{2} - x} = \frac{3}{2} \frac{dx}{x(x-1)}$$
$$= \frac{3}{2} \left(\frac{1}{x-1} - \frac{1}{x} \right) dx = \left[\log \left(\frac{x-1}{x} \right) \right]_{x=2}^{3}$$
$$\log \frac{2}{3} - \log \frac{1}{2} = \log \left[\frac{2}{3} \frac{1}{2} \right] = \log \left(\frac{4}{3} \right)$$

20. (D) Reduce it in the form $\frac{dx}{dy} + Px = q$
$$\frac{dx}{dy} = \frac{1 - x \sin y}{\cos y}$$
$$\Rightarrow \frac{dx}{dy} + x \tan y = \sec y$$
$$I.F = \sec y$$
sol is $x \sec y = \int \sec y \sec y \, dy$
$$x \sec y = \tan y + c$$

21. (C) Put
$$x + y + 1 = z \Rightarrow \frac{\exists y}{[x]} [x] [z]{x}{[x]} - 1$$

 $(x + y + 1) \frac{\exists y}{1x} = 1 \Rightarrow \frac{f(z)}{[x]} [x]{x} - 1] = 1$
 $\Rightarrow \frac{1}{[x]} = 1 + \frac{1}{z} \Rightarrow \int \frac{z}{z+1} \exists z = f(x)$
 $\Rightarrow z - \log(z+1) = x + c$
 $x + y + 1 = x + \log(x + y + 2) + c$
 $y = \log(x + y + 2) + \log c \Rightarrow x + y + 2 = ce^{y}$
22. (A) Let $f(x) = \log \left\{ e^x \left(\frac{x-2}{x+2} \right)^{\frac{3}{4}} \right\}$
 $= \log e^x + \log \left(\frac{x-2}{x+2} \right)^{\frac{3}{4}}$
 $= x \log e + \frac{3}{4} \log \left(\frac{x-2}{x+2} \right)$ [: log = 1]
Now, $\frac{d}{dx}(f(x)) = 1 + \frac{3}{4} \frac{d}{dx} \log \left(\frac{x-2}{x+2} \right)$
 $= 1 + \frac{3}{4} \left[\frac{x+2}{x-2} \cdot \left\{ \frac{(x+2) \cdot 1 - (x-2) \cdot 1}{(x+2)^2} \right\} \right]$
 $= 1 + \frac{3}{4} \times \frac{4}{x^2 - 4}$
 $= 1 + \frac{3}{x^2 - 4}$
 $\Rightarrow \frac{d}{dx}(f(x)) |_{at x = 3} = 1 + \frac{3}{5} = \frac{8}{5}$

23. (C) Let
$$I = \int \frac{5x^2 + 3}{x^2(x^2 - 2)} dx$$

Now, consider $\frac{5x^2 + 3}{x^2(x^2 - 2)}$ and take x^2
= y. Then,
 $\frac{5x^2 + 3}{x^2(x^2 - 2)} = \frac{5y + 3}{y(y - 2)}$
......(i)
Now, put
 $\frac{5y + 3}{y(y - 2)} = \frac{A}{y} + \frac{B}{y - 2}$ (ii)
 $\Rightarrow 5y + 3 = (y - 2)A + yB$
 $\Rightarrow 5y + 3 = y(A + B) - 2A$
On comparing, we get
 $A + B = 5$ and $3 = -2A$
 $\Rightarrow A = \frac{-3}{2}$ and $B = \frac{13}{2}$
Thus, $\frac{5x^2 + 3}{x^2(x^2 - 2)} = -\frac{3}{2}\frac{1}{x^2} + \frac{13}{2}\frac{1}{x^2 - 2}$
Hence, $I = -\frac{3}{2}\int \frac{dx}{x^2} + \frac{13}{2}\int \frac{dx}{x^2 - 2}$
 $= -\frac{3}{2}\left(-\frac{1}{x}\right) + \frac{13}{2} \times \frac{1}{2\sqrt{2}}\log\left|\frac{x - \sqrt{2}}{x + \sqrt{2}}\right| + C$
24. (B) Given differential equation is
 $(x - 4y^3)\frac{dy}{dx} - y = 0, (y > 0)$
 $\Rightarrow (x - 4y^3)\frac{dy}{dx} = y$
 $\Rightarrow \frac{x - 4y^3}{y} = \frac{dx}{dy}$
 $\Rightarrow \frac{dx}{dy} = \frac{x}{y} - 4y^2$
 $\Rightarrow \frac{dx}{dy} = \frac{x}{y} - 4y^2$, which is a linear
fiedcouncil.com

differential equations of the form

$$\frac{dx}{dy} + Px = Q$$
Now, I. F.

$$= e^{\int Pdy} = e^{\int \frac{-1}{y}dy} = e^{-\log y} = e^{\log y^{-1}} = \frac{1}{y}$$
and is solution is given by
 $x.(I. F.) = \int (I. F).Q \, dy + C$
 $\Rightarrow \frac{x}{y} = \int \frac{1}{y} \times (-4y^2) dy + C$
 $\Rightarrow \frac{x}{y} = -4 \frac{y^2}{2} + C$
 $\Rightarrow x = -2y^3 + Cy$
 $\Rightarrow x + 2y^3 = Cy$
25. (C) $\lim_{x \to 0} \frac{\sqrt{1+kx} - \sqrt{1-kx}}{x} = \lim_{x \to 0} \frac{2k}{\sqrt{1+kx} + \sqrt{1-kx}} = -2$
 $k = -2$

PHYSICS

- Here I = 10 A; n = 9×10^{28} m⁻³; A = 10^{-4} 26. (D) m² and $e = 1.6 \times 10^{-19} C$ Now, $v_{d} = \frac{I}{n e A} = \frac{10}{9 \times 10^{28} \times 1.6 \times 10^{-19} \times 10^{-4}}$ $= 6.94 \times 10^{-6} \text{ m s}^{-1}$ 27. (B) As the magnet is moving under gravity,
- the flux linked with the copper tube will change because of the motion of the magnet. This will produce eddy current in the body of the copper tube. According to Lenz's law, these induced currents oppose the fall of the magnet thereby producing retarding force with continuously increases with increasing velocity till it becomes equal to the force of gravity. The net force on the magnet will become zero and it will almost move with constant speed.

28. (C)
$$F = q (\vec{v} \times \vec{B}) = (-e) (-v\hat{i} \times (-B\hat{K})) = ev B\hat{j}$$

Thus, force on the electron beam is along the + ve y-axis.

29. (B) For the equilibrium of the proton, qE = mg

$$E = \frac{mg}{q}$$
$$= \frac{1.67 \times 10^{-27} \times 9.8}{1.6 \times 10^{-19}} = 1.02 \times 10^{-7} \text{ N C}^{-1}$$

30. (B) There is a time lag of about 10^{-10} s between the incidence of photon and photoelectron emission.

31. (B)
$$B = 8 \times 10^{-7}$$
 T, $c = 3 \times 10^{8}$ m/s, $E = ?$

$$E = c \times B = 3 \times 10^8 \times 8 \times 10^{-7} = 240 \text{ V/m}$$

32. (B) The value of neutral temperature is constant for a thermocouple. It depends on the nature of material and is independent of the temperature of the cold junction. The inversion temperature depends on the temperature of the cold junction as well as the nature of the material.

website : www.unifiedcouncil.com

=

associated with a moving particle is
given by

$$\lambda = \frac{h}{p}$$
Therefore, if an electron and a photon
possess the same wavelength, then they
will possess the same momentum.
(A) The reactance of a capacitor $X_c = \frac{1}{\omega C}$
where $\omega = 2\pi n \& n$ is the frequency
of AC source. Therefore, reactance of
inductor increases.
(C) Actual value of dip $= \theta = ?$,
 $\tan \theta = \frac{B_v}{B_{H}} ...(i)$
The plane is inclined at 25° with the
magnetic meridian. So the horizontal
component is $B_{\mu} \cos 25^{\circ}$. But the vertical
component is the same. The angle of dip
in this plane is 40°.
 $\tan 40^{\circ} = \frac{B_v}{B_{\mu} \cos 25^{\circ}} ...(ii)$
From equations (i) and (ii) we have,
 $\frac{\tan \theta}{\tan 40} = \cos 25$
 $\tan \theta = \tan 40 \times \cos 25 = 0.839 \times 0.91 =$
 0.7635
 $\theta = \tan^{-1}(0.7635) = 37.3^{\circ}$
(B) Ray optics is valid, when characteristic
dimensions are much larger than the
wavelength of light.
It may be pointed out that wave optics
is valid, when characterstic dimensions
are of the order of the wavelength of
light.
(B) Since $v\lambda = c, \frac{\Delta v}{v} = -\frac{\Delta \lambda}{\lambda}$ (for small changes
in v and λ).
 $\Delta \lambda = 589.6 - 589.0 = + 0.6 nm$
Then, using Eq. (11.8), as given below,
we get
 $website : www.u$

The wavelength of de-Broglie wave

33. (C)

34.

35.

36.

37.

 $\frac{\Delta v}{v} = -\frac{\Delta \lambda}{\lambda} - \upsilon_{radial} / c$

$$v_{\text{radial}} \cong + c \left(\frac{0.6}{589.0} \right) = + 3.06 \times 10^5 \,\text{m s}^{-1}$$

= 306 km/s.

Therefore, the galaxy is moving away from us.

- 38. (C) The heat developed in a system is proportional to the current through it. It cannot be Joule heat. Joule heat produced in a system is proportional to the square of the current flowing through it i.e., $H_i \propto I^2$
- 39. (B) Statements 1 and 3 are correct.An electron will accelerate when placed

in an electric field.

Any charged object will experience a force in an electric field. When the electron experiences a force, it will accelerate is correct.

2. An electron will always move towards a positively-charged object in a straight line.

The field lines may not be straight. The electron will always flow along a field line is incorrect.

 The direction of an electric field at any point is the direction of the force on a small positive charge placed at the point is correct.

This is the definition of the direction of an electric field.

40. (D) Let the potential be zero at the point P, at a distance x from the charge q_1 .

$$q_1 = -4 \ \mu C = -4 \times 10^{-6} C, q_2 = 2 \times 10^{-6} C$$

AP = x, PB = (1 - x) m

Potential due to q_1 at P is $V_A = \frac{1}{4\pi\epsilon_0} \cdot \frac{q_1}{x}$ Potential due to q_2 at P is V_B

$$= \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_2}{(1-x)}$$

Total potential at P is zero

$$= \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1}{x} + \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_2}{(1-x)} = 0$$

$$\frac{q_1}{x} = -\frac{q_2}{(1-x)}$$

$$\frac{-4 \times 10^{-6}}{x} = \frac{-2 \times 10^{-6}}{1-x}$$

$$2 (1-x) = x$$

$$2 - 2 x = x$$

$$3x = 2$$

$$x = \frac{2}{3} = 0.667 \text{ m}$$

The electric potential is zero at a point distance of 0.667 m from the – 4 μ C charge.

CHEMISTRY

41. (C) Greater conductance by HCl is due to greater mobility of H^+ ions.

42. (C) Both NF₃ and H₃O⁺ have pyramidal structures whereas NO⁻₃ and BF₃ both have trigonal planar structures.

43. (A)

$$CH_3Cl \xrightarrow{KCN} CH_3CN \xrightarrow{H^+/H_2O} CH_3COOH$$

44. (B) 1 Mole of gold = $197 \text{ g} = 6.02 \times 10^{23} \text{ atoms}$

:.
$$1 \operatorname{g} \operatorname{gold} = \frac{6.02 \times 10^{23}}{197} \operatorname{atoms}$$

As fcc contains 4 atoms per unit cell, therefore,

number of unit cells

$$=\frac{6.02\times10^{23}}{197\times4}=7.64\times10^{20}$$

- 45. (D) The false statement about transition elements is that they show multiple oxidation states always differing by units of two. They differ by one unit.
- 46. (C) Aldehydes and ketones have lower boiling points than corresponding alcohols because they cannot form Hbonds with each other.
- 47. (D) In endothermic process of dissolution, energy factor opposes the dissolution. Less is the heat of dissolution, i.e., less is the opposing factor, greater is the solubility.

48. (D) As we move from top to bottom down the group, the ionization energy decreases and the electropositive character increases, therefore, the metallic character of the elements increases. Thus, Po the last element of oxygen family is a typical metal.

49. (B)
$$-\frac{d[A]}{dt} = -\frac{1}{2} \frac{d[B]}{dt}$$

Hence $-\frac{d[B]}{dt} = 2 \times \frac{-d[A]}{dt}$ = 2 × 2.6 × 10⁻² M sec⁻¹

= 5.2 × 10⁻² M sec⁻¹

- 50. (B) Geometrical isomerism is shown by square planar and octahedral complexes.
- 51. (C) Ethyl chloride and acetyl chloride react with alc. KCN by nucleophilic substitution reaction while benzaldehyde undergoes benzoin condensation :

$$C_2H_5Cl \xrightarrow{KCN(alc.)} C_2H_5CN+KCl$$

 $CH_3COCl \longrightarrow CH_3COCN + KCl$

$$2 C_{6}H_{5}CHO \longrightarrow C_{6}H_{5}CHOHCOC_{6}H_{5}$$

Thus, only chlorobenzene does not react.

52. (C) Packing fractions are :

Cubic close packing =
$$\frac{\pi\sqrt{2}}{6}$$
 = 0.74 = 74 %

Body centred cubic packing

$$=\frac{\pi\sqrt{3}}{8}=0.68=68\%$$

Simple cubic
$$=\frac{\pi}{6}=0.52=52\%$$

Diamond =
$$\frac{\pi\sqrt{3}}{16}$$
 = 0.34 = 34 %

53. (C) Halogens are coloured because their molecules absorb visible light causing the excitation of outer electrons to higher energy levels.

54. (A) 55. (A)	Lucas reagent is conc. $HCl + anhyd$. Zn Cl_2 Colloidal solution of palladium has the smallest particle size and therefore largest surface area. Hence, it will have maximum adsorption.	 ∴ based on Arun, it has to be either Monday or Friday. Hence, that 'one day', when they both said that they lied 'yesterday', has to be Friday. 58. (C) 				
	CRITICAL THINKING	argument one is weak argument :				
56. (D)	24 You should have eliminated choice "A" immediately. Indu can't be 14 years old if Meghana is going to be Indu's age in five years. The best way to eliminate	Explanation : Although the point is taken to be true, it does not provide evidence for the benefits of its position, it merely states an irrelevant fact, making this a weak argument.				
	other answer choices is to try plugging	argument two is weak argument :				
	them in to the information given in the problem. For instance, for choice "B", if Indu is 10, then Meghana must be 5. The difference in their ages is 5. The difference between Eswar's age, 29, and Meghana's age, 5, is 24. Is 24 two times 5? No. Then choice "B" is wrong. If Indu = 19, then Meghana age = 14, Eshwar's age – Meghana's age	Explanation : Accepting the argument as true, avoiding bankruptcy is an essential motive for an organisation, however, the statement does not discuss bankruptcy, rather it is discussing profits and expenses. Protection against bankruptcy is not the topic, and is straying from the point, and is, therefore a weak argument.				
	29 – 14 = 15	Argument three is strong argument :				
	Indu's age – Meghana's age 19 – 14 = 5 15 is not two times of 5	Explanation : The argument addresses the initial statement directly, providing a clear disadvantage of the statement, making this a strong argument.				
	You could eliminate choice "C" in the same way and be left with choice D. If Indu's age = 24 then Meghana's age = 19 Indu's age – Meghana's age = $24 - 19 = 5$ Eswar's age – meghana's age = $29 - 19$	Argument four is weak argument : Explanation : The initial question does not discuss taking away the company's right to control its own size, only aspect of it.				

= 10

'5' is two times of 10

57. (B)

	Mon	Tue	Wed	Thur	Fri	Sat	Sun
Arun	\checkmark	\checkmark	\checkmark	\checkmark			
Dinesh	\checkmark				\checkmark	\checkmark	\checkmark

 \checkmark Indicates the person telling the truth

If Arun tells the truth on that 'one day' that he lied 'yesterday', then that 'one day' must be Monday.

If Arun tells the lie on that 'one day' that he lied 'yesterday', then he must be telling the truth 'yesterday' and so that 'one day' must be Friday.

website : www.unifiedcouncil.com

59. (D)

question, rather than the initial one,

All actions given a right course of action

following problem caused by the incessant rain for the past several days because each of the courses we provide

presenting a weak argument.

relief to the victims.

60. (C)

Explanation:

On using all the conditions, we get the following table					
Name	Soup	Ice Cream			
Avinash	Vegetable	Mango			
Vijay	Tomato	Tutti-Fruti			
Alok	Corn	Pista			
Vivek	Chicken	Vanilla			
Rajiv	Mutton	Cassata			